
Algorithms - Spring IS

Reason

Backtracking

Rep
· HW due Friday
↳ If algorithm is

requested , 3parts
:

· pseudocode (tdescription)
· correctness
· Runtime

·

Teams ofup
to, score

Last time : RecursionTrees

-T(n)= rT()+-

level o ricconstant

H
1 ①
&

level i> pi nodes
,
each doing f(ti)
-

=1

To solve: Sum all work

in the tree ! this
US

2(work on leveli) ↓a
go,a

levels i
in free

I anodes)(work
i = 0

Master Theorem
-

Tal= aT(5) +f(n)=
S

- Uplogoa#

f(n)==plogba

- f(n) plogpa
-

O

W

-- -

- - -

G

E
-

Oher examples
Medians : find "middle" element.

Two were
covered :

&: How do we know which

side has the kith

element ? Isr?
&

not

Im
E

Rundme
-

Still depends on pivot !

worst case :

Choose 1 or last

element

TG)= (n-1) +T(n
-)

Tunrally
=O(nz)

"Faster" version :
use

for loop

B (still
O(D) time)
-

-
C

⑳

u -43⑯
..

-&6 10

2

Ofy

we

Thecurrence :

an)O
-

an)-
=

=>

TCr) = runtime for n
elf list

=an
for any nodew/k;

2 children/ L
have DYes 34

⑮
/

:"Verdi :Lin

Tree has depth

logged loguh
↑

↑ divide multiply

panch) by 41

T(n)= " (work perl
1

= (t)
-

lgeoseries

En
=) B

Why ? Recall quiaksort :

T(n)=max[TIT(r) to
1/ prot

code
2 calls

Instead of random pivots
call median :

T(n)= 0(n) +0 (n) +2T

call
↑ pint

Prom

"Quicksort" in log

Mplication : Zu digit#

⑳known -mm
(0ma +b) (10*c + d)=
A

102vact contested)L ww-

l +bExamp: W

102568 x 358691
- A(21)x(- YC=

↳ Why does this suggest
recursion??
-

* multiply smaller
#s !

Todgorithm:.

E -
- -

--
-2 arc
- b . dE 8 -bisEad

Zim
additions + O-padding

Rahme :

T(m)= 0(1) + 4T(z)

Master thu : f(n)
=Oc = no

d = 0

a= 4
b = 2

a = 4 - b =2 = 1
2

T(m) = mogat = m

Abettertrick ac-batbd-ad

whT
E
- 9=
-

betad
Runtime-

T(n)= 04) + 3T()
Y

no sod=o ab=

MT : 328

T(n)=Onlogb) laddose
blog2

Exponentiatora
(Amazing, right ??)
The algorithms do very
well :
- to compute at
need Ollogn)
multiplications

However , doesn't achieve

lowest possible for (
every
with avalues just

: Backtrackinga In Al,

apparently !
(Don't worry

if not...)

Why we discussi
It's really recision
(again) !

Also really a form of

brute force :

try everything recosively,
-see what works.

↳ dyn . programming

#Queens

-

Issue : representation !

His choice : one per
row,

so store index of queen
on rows in array.

Now , how
to solve :

brute force ! Place a

queen a keep going.
If you get stuck,
"unplace" lastqueen
- back up

The free (b/c pretty) :

Problem It hard part) :

Formalizing this in
code.

Sketch :

Result :

Run)=

CameTrees :
a way to model moves in

2-player games
Assume :
- No randomness

so thegame
is just 2 people taking
turns
Ex : Checkers, dess , Nim ,

Go

- (not settlers of
Cater

!)

- "Perfect" players :
Makes rational decisions,

a

If thereIs a move
to get

them to a win
state

, they
do it !

Idea : Track current state of-
the game ,

as play occurs

Ie-the-toe
1st player
play an X -

/100
S

...
!

py ...)
:

i ,

doPe
Model every possible move.
-

A state is good for player1
if they either have

won,

or could more to a bad state

for player I .

have

andbaditapossible
moves lead to a

state. that is good for
player 2.

think from the bottom up :

Tic-tac-to again
:

...

Listen good or bad
?

↑
Fr

S ↑ This is

good for1.# (Hecan move

od
fora

some
where

9 bad for 2)

So :

good :

I have a

child who ↳other guy
thinks is
bad :

Result :

Bad

All
->

of these
are good
for other guy
Result:

Pansides :

Game treesareE

Tic-tac-to : over 200, 000 leaves ,

People can still "predict"
:

we're good at inferring
state/strategy

intutely,
with practive

Computers have to search.

Hence-took 60 years
to

outerget a decent com
chess player ! Need
"heuristics

Il laka guesses
to make It work.

Game theory- a bit more

complicated.
Here

,
we assume

clear

win vs . lose.

Game theory suggests
moreSubtlepossibll,
movesa"randomness" .

&

Even if both knowoutcomes,
result is unclear !

Kample: Subset Sum

Given a set X of positive
intergers andaetget valuet
,
is there

X which sums to t?
S

: X = 58 , 6, 7, 3, 10 , 5 , 93
t = 15

How would we solve?

Consider one at a time :

X = 28 , 6 , 7, 5, 3 , 1 , 93

&

Formalize this : recursion

↓base case
?

Algorithm :

to use

reset

Carras
Correctness : inductive proof,
-

on Size of X , i

Basecases :

i = (x) =0 (so X = &3) :

RndHyp : works for X[1 .. n-1
↑

-

or smaller values ofT

End step : Full array X[l .on]
Consider X[n] :

Runtime:

