Algorithms - Spring 25

Rearsian Backfrecking

Keap " HU due Friday L) If algorithm requested, 3 parts: · pseudocode (tdescription) · correctness · Runtin · Teams of up to 3 (Sign up on gradescope)

Last time: Recersion Trees $T(n) = rT(\frac{n}{c}) + f(n)$ U P, C constant level O f(n/c) f(n/c) f(n/c) f(n/c²) r' nodes, each doing f(<u>N</u>) $f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L}) = f(n/c^{L})$ **Figure 1.9.** A recursion tree for the recurrence T(n) = r T(n/c) + f(n)To solve: Sum all work. In the free ! VS flus 1 2 2007. 1 20100? 5 (work on level i) levels 109cn 22 ri. f(n 2 in free depth (* nodes) (work

$$T(n) = \begin{array}{l} O(n^{\log_{b} \alpha}) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha}) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(f(n)) & f(n) = O(n^{\log_{b} \alpha}) \\ O(f(n)) & f(n) = O(n^{\log_{b} \alpha + \varepsilon}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha + \varepsilon}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha + \varepsilon}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha + \varepsilon}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) & f(n) = O(n^{\log_{b} \alpha}) \\ O(n^{\log_{b} \alpha} \log n) \\ O(n^{\log_{b} \alpha} \log$$

Combining the three cases above gives us the following "master theorem".

Theorem 1 The recurrence

Theore

$$T(n) = aT(n/b) + cn^{k}$$

$$T(1) = c,$$

where a, b, c, and k are all constants, solves to:

$$T(n) \in \Theta(n^k) \text{ if } a < b^k$$

$$T(n) \in \Theta(n^k \log n) \text{ if } a = b^k$$

$$T(n) \in \Theta(n^{\log_b a}) \text{ if } a > b^k$$

THEOREM 2

2 **MASTER THEOREM** Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^{d}$$

whenever $n = b^k$, where k is a positive integer, $a \ge 1$, b is an integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

Other examp Medians: find "middle" elemen wo were covered: QUICKSELECT(A[1..n], k): if n = 1return A[1] else Choose a pivot element A[p] $r \leftarrow \text{Partition}(A[1..n], p)$ if k < rreturn QUICKSELECT(A[1..r-1], k) else if k > rreturn QUICKSELECT(A[r+1..n], k-r) else return A[r]Figure 1.12. Quickselect, or one-armed guicksort de we know which How side has the eleven Cun và

Runtine Still depends on pivot! Worst case? Choose 1st or last elever t T(n) = (n-1) + T(n-1) (unred) $=O(n^2)$

"Faster" version use for loop the (still p(1) the MomSelect(A[1..n], k): if $n \le 25$ ((or whatever)) use brute force else $m \leftarrow [n/5]$ for $i \leftarrow 1$ to m $M[i] \leftarrow \text{MEDIANOFFIVE}(A[5i - 4..5i]) \ (\text{Brute force})$ $mom \leftrightarrow MOMSELECT(M[1..m], [m/2])$ ((Recursion!)) $r \leftarrow \text{Partition}(A[1..n], mom)$ if k < rreturn MomSelect(A[1..r-1], k) ((Recursion!)) else if k > rreturn MomSelect(A[r+1..n], k-r) ((Recursion!)) else return mom NIE hod

Remen MOMSELECT(A[1..n], k):if $n \le 25$ ((or whatever)) use brute force else т $\left[n/5\right]$ for to m $M[i] \leftarrow \text{MEDIANOFFIVE}(A[5i - 4..5i]) \ (\langle Brute \ force! \rangle \rangle$ $mom \leftarrow MOMSELECT(M[1..m], \lfloor m/2 \rfloor)$ ((Recursion!)) $r \leftarrow \text{PARTITION}(A[1..n], mom)$ return MomSelect(A[1..r-1], k) ((Recursion!)) else if k > rreturn MomSelect(A[r+1..n], k-r) ((Recursion!)) else return mom 457 e e T(n) = runtor any node children 31/4 work V **O**.' ۰N level

Tree has depth 5 05 4/3 h $log_5 n \leq d$ multiply by 3/y Co Ju by 4/3 Coluide (left prench) T(n) = log n (work per level) $\frac{1}{20}$ $4n \left(\frac{19}{20}\right)^{2} = n \left(\frac{19}{1-\frac{19}{20}}\right)^{1}$

Why? Reall guicksort: T(n) = max (T(r) + T(n-r) + Qn) r () prot calls cade 2 calls cade Prot call weden: T(n) = G(n) + O(n) + 2T(2)Pivot PNOM n Njos N " Quictsort"

Multiplication: 2m digit # Known "fact": $m = 10^{11}$ $(10^{10} a + 5)(10^{10} c + d) =$ $\begin{bmatrix}
 10^{2m}ac + 10^{m}bc + ad \\
 + bd \\
 + bd \\
 102568 \times 358691 \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 67) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 568) \times (358 \times 10^{3} + 568) \\
 = (102 \times 10^{3} + 568) \times (358 \times 10^{3} + 568) \times (358 \times 10^{3} + 568) \times (358 \times 10^{3} + 568)$ Lo Why does this suggest recursion?? * multiply Smeller #5]

algorithm: the SPLITMULTIPLY(x, y, n): if n = 1return $x \cdot y$ else $m \leftarrow \lceil n/2 \rceil$ $a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m$ $\langle \langle x = 10^m a + b \rangle \rangle$ $c \leftarrow \lfloor y/10^m \rfloor; d \leftarrow y \mod 10^m$ $\langle \langle y = 10^m c + d \rangle \rangle$ $- e \leftarrow \text{SplitMultiply}(a, c, m) \angle$ G.C $f \leftarrow \text{SplitMultiply}(b, d, m)$ - $g \leftarrow \text{SPLITMULTIP}(b, c, n)$ ∠ $- h \leftarrow \text{SplitMultip}(a, d, m)$ a'd return $10^{2m}e + 10^m(g+h) + f$ additions + O-padding Kuntine $\Gamma(m) = O(1) + 4T(\frac{m}{2})$ $Mcoter Hum: f(n) = O(i) = n^{0}$ $b^{d} = 2^{o} = 1$ 10924 $= \left(\left(\frac{1}{2} \sqrt{2} \left(\frac{1}{2} \sqrt{2} \sqrt{2} \right) \right) \right)$

A better trick ic-betbd-ad actbd - (a-b) c-d) who? E bctad who? FASTMULTIPLY(x, y, n): if n = 1return $x \cdot y$ else $m \leftarrow \lceil n/2 \rceil$ $a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m$ $\langle \langle x = 10^m a + b \rangle \rangle$ $c \leftarrow \lfloor y/10^m \rfloor; d \leftarrow y \mod 10^m$ $\langle \langle y = 10^m c + d \rangle \rangle$ $e \leftarrow \text{FastMultiply}(a, c, m)$ $f \leftarrow \text{FASTMULTIPLY}(b, d, m)$ $g \leftarrow \text{FASTMULTIPLY}(a-b,c-d,n)$ return $10^{2m}e + 10^m(e+f-g) + f$ bc+c Runtime 12 $\Gamma(n) = O(a) + 3$ nº, so d=0 a => 20 (cdd. borg $J(n) \neq (n) \frac{\log 3}{2}$ offices 761092362

Exponentation: Still open! (Amazing, right??) The algorithms do very wella -to compute a reed Ollog n) multiplications However, doesn't achieve lowest possible for even value - it's just with a constant!

Ch 2: Back fracking: Many of you saw in AI, appcsently I (Don't worry if not...) Why we discuss: It's really recursion at (again)! Also really a form of prute force. try eventhing recursively, I see that works. Lodyn- programme

N Queens

Figure 2.1. Gauss's first solution to the 8 queens problem, represented by the array [5, 7, 1, 4, 2, 8, 6, 3]

Issue: representation His choice: one per row, so store index of queen on rows in array. Now, how to solve: Drute force. Place a queen + top going If you get stuck, "unplace" last queen + back up

The free (b/c pretty) i 曾

 < 響 曾
眥

Figure 2.3. The complete recursion tree of Gauss and Laquière's algorithm for the 4 queens problem.

Problem la hard part): Formalizing this in cook

Sketch:

Result

 $\begin{array}{l} \underline{PLACEQUEENS(Q[1..n],r):} \\ \text{if } r = n+1 \\ \text{print } Q[1..n] \\ \text{else} \\ \text{for } j \leftarrow 1 \text{ to } n \\ legal \leftarrow \text{TRUE} \\ \text{for } i \leftarrow 1 \text{ to } r-1 \\ \text{if } (Q[i]=j) \text{ or } (Q[i]=j+r-i) \text{ or } (Q[i]=j-r+i) \\ legal \leftarrow \text{FALSE} \\ \text{if } legal \\ Q[r] \leftarrow j \\ \text{PLACEQUEENS}(Q[1..n],r+1) \quad \langle\langle \text{Recursion!} \rangle \rangle \end{array}$

Runtine; $\mathbb{Q}(n) =$

Game Trees: a way to model mores 2-player games (V_{1}) Assume : - No rondomness so the game is just 2 people taking turns Ex: Chedcers, chess, Nim, Go (not settlers of Caten!) "Perfect" players. Makes rational decisions, t If there is a more to get then to a win state, they I do it!

Idea: Track current state of the game, as play occurs Tic-tae-pe " 1st playes: HI-play on x HI-000 Znd XIII playes: Hit put o 15 XO XIO Ist player; Put x V p'ut x leaf: 10 10 1 1 2000 for player 1 bed for player 2 bed for player 2 Model every possible move.

A state is good for player 1 if they either have won, or could move to a bad state tor player 2. and bad if they have lost, or if all possible moves lead to a state. that is good for player 2. Think from the bottom up?

Tic-tec-to again: 2'sturn TXTOX good or bad? 1'S XOX Jurn OxO This is (He can move Gome where XOX good Gr 1 bad Gr 2 bad for 2)

50: $Q \propto d$ Thave Child who other guy thinks is bad Resul Bed fll these A ase good for other guy Result

Downsides ? Game trees are HUGE! Tic-fac-to: over 200,000 leaves. People can shll "predict" we're good at informing state/strategy intuited, with practive Computers have to search Hence - took 60 years to get a decent computer chess player! Need "heuristics" (aka guesses) to make it work.

more $\mathcal{O}_{\mathbf{t}}$ Game theory complicated Here, we assume \mathcal{C}^{\prime} lose WIN VS. Game theory Suggest more subtle possibilites, as well as simulteneous moves of "random ness"

Example: Odds and Evens

Consider the simple game called **odds and evens**. Suppose that player 1 takes evens and player 2 takes odds. Then, each player simultaneously shows either one finger or two fingers. If the number of fingers matches, then the result is *even*, and player 1 wins the bet (\$2). If the number of fingers does not match, then the result is *odd*, and player 2 wins the bet (\$2). Eacl player has two possible strategies: show one finger or show two fingers. The *payoff matrix* shown below represents the payof to player 1.

if both know

result is unclear 1

 \bigcirc

Payoff Matrix

		Player 2									
Strateg	y	1	2								
Player 1	1	2	-2								
	2	-2	2								
	-	-2	2								

Example: Subset Sum Given a set X of positive integers and a - Erget value t, is there a subset of X which sums to t? $E_{X}: X = \{28, 6, 7, 3, 10, 5, 9\}$ t=15 How would we solve?

Consider one at a time: $X = \{28, 6, 7, 5, 3, 1, 9\}$ Formalize this: recursion at base case?

Algorithm: $\langle \langle Does any subset of X sum to T? \rangle \rangle$ reset to use arrays. SUBSETSUM(X, T): if T = 0return TRUE else if T < 0 or $X = \emptyset$ return False else $x \leftarrow \text{any element of } X$ with \leftarrow SUBSETSUM $(X \setminus \{x\}, T - x)$ ((Recurse!)) wout \leftarrow SUBSETSUM $(X \setminus \{x\}, T)$ ((Recurse!)) return (*with* \lor *wout*) $\langle \langle Does any subset of X[1..i] sum to T? \rangle \rangle$ SUBSETSUM(X, i, T): if T = 0return True else if T < 0 or i = 0return FALSE else with \leftarrow SUBSETSUM(X, i-1, T-X[i])((Recurse!)) wout \leftarrow SUBSETSUM(X, i-1, T)((Recurse!)) return (with \lor wout) Correctness: inductive proof, on Size of X, i Base cases $\xi = |\chi| = O(so \chi = \xi)$

And Hyp: works for X[1...n-1] or smaller values of T Ind step: Full array XII.on] Consider XEn]:

Runtme	· · · · · · · · · ·	· · · · · · · ·	. .
	• · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
	· · · · · · · · ·		
· · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	. .
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·
	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
	· · · · · · · · ·	· · · · · · · ·	
· · · · · · · · · · · · ·	· · · · · · · · ·	 	· · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · ·

٠	•	٠	٠	•	•		•	•		•	•	•	•	•	•	•	•	•	•	• •	•	•		•	•	•	•	•	•	•	•	•	
•	•	•	٠	٠	•	•	•	٠	•	*	•	•	٠	•	•	٠	•	•	•	• •		•	٠		•	•	•	٠	٠	٠	*	• ·	 ٠
٠		•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	• •			•		•	٠	•	•	•	•	•	•	 •
·	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	 •
٠		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •			•		•	•	•	•	•	•	•	•	 •
٠		•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	• •			٠		•	٠	•	٠	•	•	•	•	 ٠
•	•	*	٠	٠	•	•	•		•	٠	•	•		•	•	•	•	•	•	• •		•	٠	•	•	•	•	٠	٠	٠	•	•	 ٠
٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	 •
٠	٠	٠	٠	٠	•	٠	•		٠	•	•	•	0	•	•	0	•	•	•	• •		٠	٠	•	•	•	•	٠	0	٠	•	• •	 ٠
٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	*	• •	 •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	• ·	 •
•	•	•	٠	٠	•	•	•	٠	٠	•	•	•	٠	•	•	٠	•	•	•	• •	• •	•	٠	•	•	•	•	•	٠	٠	•	• ·	 ٠
•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	*	• •	• •	•	•	•	•	•	•	•	•	•	•	• ·	 •
•	•	•	•	•			•	•		•		•	•		•	•	•	•				•	•	•	•	•		•	•		•		 •
																																• •	
				•												•				• •								•		•		• •	
												•		•		•			•								•				•		
			٠	٠		•			•			•		•		•			•	• •			٠					•	•	•	•	•	
										•			•	•		•		•	•	• •						•			•			•	 •
٠	٠	•		٠		•			•		•	•		•	•	٠	•	•	•	•		٠	٠	•				•		•	•	•	
٠		•	٠	•		•	•	•	•	•	•	•	٠	•		•	•	•	•	• •			٠		•	•		•	٠	•	•	•	 •
	•			•	•		•	•		•	•	•	•	•	•	•	•	•	•	• •		•		•	•	•	•	•	•	•	•	•	
	•			•	•	•		•	•		•	•	•	•	•	•	•	•	•			•			•		•	•		•	•		
•	•		٠	•	•	•	•	•	•	٠	•	•		•	•	•	•	•	•	•		•	٠	•	٠	•	•	•	•	•	•	•	 ٠
٠		٠	•		•		•			٠		•	٠	•		•	•	•	•	• •			٠		•	٠	•	٠	•	٠	•	•	 •
•	•	•	٠	٠	•	•	•	•	•	٠	•	•	0	•	•	•	•	•	•	• •		٠	٠	•	٠	•	•	•	•	•	•	•	 ٠
٠		*	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•	•	*	•	 •
٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•		٠	•	٠	•	•	•	٠	•	•	•	•	 •
•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	• •	•	•	٠		٠	•	•	•	•	•	•	•	 ٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	• •		•	•	•	•	•	•	•	•	•	•	•	 •
•	•	•	٠	٠	•	•	•	٠	•	٠	•	•	٠	•	•	٠	•	•	•	• •		•	۰	•	•	•	•	٠	٠	٠	•	• ·	 ٠
٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ·	• •	•	•	•	•	•	•	•	•	•	•	• ·	 •
•	•	•	•	•		•	•	*	•	•	•	•	*	•	•	*	•	•	•			•	•	•	•	•	•	•	*	•	•		 ·
																				• •												• •	
				•			•													• •												•	
															•																	• •	
																							٠										
																		•		• •					•						•		
																							٠										